Oxidative addition of boron-boron, boron-chlorine and boron-bromine bonds to platinum(0) ${ }^{1}$

William Clegg ${ }^{\text {a }}$, Fiona J. Lawlor ${ }^{\mathrm{b}}$, Gerry Lesley ${ }^{\mathrm{c}}$, Todd B. Marder ${ }^{\mathrm{c}, 2}$, Nicholas C. Norman ${ }^{\text {b,* }}$, A. Guy Orpen ${ }^{\text {b }}$, Michael J. Quayle ${ }^{\text {b }}$, Craig R. Rice ${ }^{\mathrm{b}}$, Andrew J. Scott ${ }^{\text {a }}$, Fabio E.S. Souza ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, The University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK
${ }^{\mathrm{b}}$ School of Chemistry, The University of Bristol, Bristol, BS8 1TS, UK
${ }^{\text {c }}$ Department of Chemistry, The University of Waterloo, Waterloo, Ont., Canada N2L 3G1

Received 10 February 1997

Abstract

The synthesis and spectroscopic characterisation of the new diborane(4) compounds $\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Cl}_{4}\right)_{2}$ and $\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)_{2}$ are reported together with the diborane(4) bis-amine adduct $\left[\mathrm{B}_{2}(\mathrm{calix})\left(\mathrm{NHMe}_{2}\right)_{2}\right]$ (calix $=\mathrm{Bu}^{\mathrm{t}}$ calix[4]arene). $\mathrm{B}-\mathrm{B}$ bond oxidative addition reactions between the platinum (0) compound $\left[\mathrm{Pt}^{(}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ and the diborane (4) compounds $\mathrm{B}_{2}\left(1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}, \mathrm{~B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Cl}_{4}\right)_{2}$ and $\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)_{2}$ are also described which result in the platinum(II) bis-boryl complexes cis- $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}_{2}\left(1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{2}\right]$, cis $-\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Cl}_{4}\right)\right\}_{2}\right]$ and cis $-\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)\right\}_{2}\right]$ respectively, the former two having been characterised by mono-boryl complexes trans-[$\left.\mathrm{PtX}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}\right]$ as a result of oxidative addition of the $\mathrm{B}-\mathrm{X}$ bonds to the $\mathrm{Pt}(0)$ centre; the chloro derivative has been characterised by X-ray crystallography. © 1998 Elsevier Science S.A.

1. Introduction

A key mechanistic feature of the transition metal catalysed diboration of alkenes [1], alkynes [2-6] and 1,3 -dienes [7] is the oxidative addition of the $\mathrm{B}-\mathrm{B}$ bond in diborane(4) compounds $\left(\mathrm{R}_{2} \mathrm{~B}-\mathrm{BR}_{2}\right)$ to a low-valent transition metal centre resulting in metal boryl species, $\mathrm{M}-\mathrm{BR}_{2}$. Such species have also been implicated in the palladium catalysed cross-coupling of diborane(4) compounds with haloarenes [8,9], and crystallographically characterised examples of metal boryls resulting from B-B bond oxidative addition to tungsten(II) [10,11],

[^0]iron(0) [12], cobalt(0) [13], rhodium(I) [14-16], iridium(I) [17] and platinum(0) $[3,4,6]$ centres have now been described. Structurally characterised examples of metal boryls also include complexes of tantalum [18], tungsten [19], manganese [20], iron [21], rhodium [22] and iridium [23-26].

In addition to complexes deriving from $\mathrm{B}-\mathrm{B}$ bond oxidative addition, a number of related studies have focussed on the oxidative addition of $\mathrm{Si}-\mathrm{Si}, \mathrm{Ge}-\mathrm{Ge}$, $\mathrm{Sn}-\mathrm{Sn}, \mathrm{B}-\mathrm{Si}, \mathrm{B}-\mathrm{Sn}, \mathrm{Si}-\mathrm{Cl}, \mathrm{Si}-\mathrm{Br}, \mathrm{P}-\mathrm{Se}, \mathrm{S}-\mathrm{S}$ and $\mathrm{Se}-\mathrm{Se}$ bonds to either palladium(0) or platinum(0) centres (and, in the case of $\mathrm{Si}-\mathrm{Cl}$, iridium(I)) ${ }^{3}$. Herein we describe further studies of the oxidative addition of $\mathrm{B}-\mathrm{B}$ bonds to platinum(0) together with examples of $\mathrm{B}-\mathrm{Cl}$ and $\mathrm{B}-\mathrm{Br}$ bond oxidative addition reactions.

[^1]
2. Results and discussion

The diborane(4) compounds which have been most studied with respect to metal catalysed diboration and $\mathrm{B}-\mathrm{B}$ bond oxidative addition reactions are the catecholate and pinacolate species $\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}$ (1) [36,37] and $\mathrm{B}_{2}\left(\mathrm{OCMe}_{2} \mathrm{CMe}_{2} \mathrm{O}\right)_{2}$ (2) [38], although the substituted catecholate derivatives $\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2}-3-\right.$ $\left.\mathrm{MeC}_{6} \mathrm{H}_{3}\right)_{2}, \quad \mathrm{~B}_{2}\left(1,2-\mathrm{O}_{2}-4-\mathrm{MeC}_{6} \mathrm{H}_{3}\right)_{2}, \quad \mathrm{~B}_{2}\left(1,2-\mathrm{O}_{2}-4-\right.$ $\left.\mathrm{Bu}^{\mathrm{t}} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{2}, \mathrm{~B}_{2}\left(1,2-\mathrm{O}_{2}-3,5-\mathrm{Bu}_{2}^{\mathrm{t}} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2}$ and $\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2}-\right.$ 3- $\left.\mathrm{MeOC}_{6} \mathrm{H}_{3}\right)_{2}$ have also been characterised in addition to the thiocatecholate compound $\mathrm{B}_{2}\left(1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}$ (3) [36,37]. The synthetic route to all of the catecholate and thiocatecholate species mentioned here has been described in detail in Ref. [36] and is summarised in Eq. (1). Herein, we provide synthetic and spectroscopic data for two new compounds of this class, namely the tetrahalocatecholate species $\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Cl}_{4}\right)_{2}$ (4) and $\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)_{2}(\mathbf{5})$. An attempted preparation of the diborane (4) compound $\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{10} \mathrm{H}_{6}\right)_{2}(6)$, derived from $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ and naphthalene-1,2-diol, was hampered by its extreme insolubility.

$$
\begin{align*}
& \mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}+2 \mathrm{HO}-\mathrm{R}-\mathrm{OH}+4 \mathrm{HCl} \\
& \quad \rightarrow \mathrm{~B}_{2}(\mathrm{O}-\mathrm{R}-\mathrm{O})_{2}+4\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right] \mathrm{Cl} \tag{1}
\end{align*}
$$

In all of the catecholate or thiocatecholate diborane(4) compounds mentioned above, the initial reaction between $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ and the catechol or thiocatechol proceeds to afford bis-amine adducts of the form $\left[\mathrm{B}_{2}(\mathrm{cat})_{2}\left(\mathrm{NHMe}_{2}\right)_{2}\right] \quad(\mathrm{cat}=$ general catecholate group $)$ according to Eq. (2), the role of the HCl in Eq. (1) thus being to remove both free and coordinated amine, NHMe_{2}, as the ammonium salt $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right] \mathrm{Cl}$ [36]. In general, the alkoxy diborane(4) compounds such as 2 and $\mathrm{B}_{2}\left(\mathrm{OCH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}$ [36] are insufficiently Lewis acidic at the boron centre to coordinate amine.

$$
\begin{align*}
& \mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}+2 \mathrm{H}_{2} \text { cat } \\
& \quad \rightarrow\left[\mathrm{B}_{2}(\text { cat })_{2}\left(\mathrm{NHMe}_{2}\right)_{2}\right]+2 \mathrm{NHMe}_{2} \tag{2}
\end{align*}
$$

An interesting example of a tetraaryloxy diborane(4) compound which appears to be unstable in the absence of coordinated amine, however, is $\left[\mathrm{B}_{2}(\right.$ calix $\left.)\left(\mathrm{NHMe}_{2}\right)_{2}\right]$ (7) derived from the reaction between $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ and But $^{\text {c }}$ calix[4]arene. Spectroscopic and analytical data for 7 were fully consistent with the structure shown in the diagram, but the attempted preparation of the uncomplexed diborane(4) compound by addition of HCl (as in Eq. (1)) resulted only in degradation products such as Butcalix[4]arene itself; no boron containing species $^{\text {t }}$ could be identified. One explanation for the apparent instability of the desired compound B_{2} (calix) relates to the likely inability of the calix oxygens to act as π donors to the diboron unit. Thus, in the absence of substantial steric protection, diborane(4) compounds are only stable in the presence of efficient π-donor groups where the contact atoms are generally-nitrogen, oxygen, sulphur or fluorine (see structure $\mathbf{A})^{4}$. Whilst four oxygen atoms would be present in B_{2} (calix), the orientation of the organyl groups to which they are attached is such that the π-donor orbitals on the oxygen atoms are not in the correct orientation to overlap effectively with the boron centres (B). We assume therefore that as a result of this absence of efficient oxygen π-donation, the desired compound B_{2} (calix) is too unstable to be isolated.

7

A

B

The diborane(4) compounds $\mathbf{3 - 5}$ all react cleanly and quantitatively with the platinum(0) complex $\left[\mathrm{Pt}^{(}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ to afford the platinum(II) bisboryls, cis- $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{2}\right] \quad$ (8), cis-$\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Cl}_{4}\right)\right\}_{2}\right]$ (9) and cis-$\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)\right\}_{2}\right]$ (10), spectroscopic and analytical data for which were consistent with the expected structures. Additionally, both $\mathbf{8}$ and $\mathbf{9}$ were characterised by X-ray crystallography, the results of which

[^2]

Fig. 1. A view of the molecular structure of compound $\mathbf{8}$ with key atoms labelled and H atoms omitted. Ellipsoids are drawn at the 50% level.
are shown in Figs. 1 and 2 respectively; selected bond lengths and angles are given in Table 1.

The structures of both $\mathbf{8}$ and 9 adopt the expected square planar coordination geometry around the platinum centre (maximum atom deviations from the $\mathrm{PtP}_{2} \mathrm{~B}_{2}$ mean plane are 0.121 and $0.037 \AA$, respectively) with the boryl groups in a cis-configuration. Metric parameters of note are the $\mathrm{Pt}-\mathrm{B}$ bond distances (8, av. 2.065 and 9 av. $2.04 \AA$) together with the $\mathrm{B}-\mathrm{Pt}-\mathrm{B}(\mathbf{8}, 78.5(2)$ and $9,79.9(8)^{\circ}$) and $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angles (8, 100.38(3) and $\left.9,100.8(2)^{\circ}\right)$. All of these parameters are similar to those found in the other structurally characterised platinum(II) cis, bis-boryl compounds $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(\mathrm{OCMe}_{2} \mathrm{CMe}_{2} \mathrm{O}\right)\right\}_{2}\right][3],\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\{\mathrm{~B}(1,2-\right.$ $\left.\left.\left.\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{2}\right][4,6],\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{O}_{2}-4-\mathrm{Bu}^{\mathrm{t}} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right\}_{2}\right]$

Fig. 2. A view of the molecular structure of compound $\mathbf{9}$ with key atoms labelled and H atoms omitted. Ellipsoids are drawn at the 50\% level.
[6], $\quad\left[\mathrm{Pt}(\mathrm{dppe})\left\{\mathrm{B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{2}\right.$] [6] and $\left[\mathrm{Pt}(\mathrm{dppb})\left\{\mathrm{B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{2}\right][6]$, for which the $\mathrm{Pt}-\mathrm{B}$ distances range from 2.031 to $2.076 \AA$, the $\mathrm{B}-\mathrm{Pt}-\mathrm{B}$ angles fall in the relatively narrow range of $75.3-81.0^{\circ}$ and the $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angles range from 100.72 to 107.14°. In the compound with the chelating diphosphine ligand dppe, the $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle $\left(85.36^{\circ}\right)$ is somewhat reduced as expected.

8, $E=S, X=H ; 9, E=O, X=C l ; 10, E=O, X=B r$

Table 1
Selected bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$ for compounds $\mathbf{8}, 9$ and 11

$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 1}$
Bond lengths	$\mathrm{Pt}(1)-\mathrm{B}(1), 2.04(2)$	
$\mathrm{Pt}(1)-\mathrm{B}(1), 2.056(4)$	$\mathrm{Pt}(1)-\mathrm{B}(2), 2.03(2)$	$\mathrm{Pt}(1)-\mathrm{B}(1), 2.008(8)$
$\mathrm{Pt}(1)-\mathrm{B}(2), 2.075(4)$	$\mathrm{Pt}(1)-\mathrm{P}(1), 2.354(5)$	$\mathrm{Pt}(1)-\mathrm{Cl}(1), 2.4446(14)$
$\mathrm{Pt}(1)-\mathrm{P}(1), 2.3954(9)$	$\mathrm{Pt}(1)-\mathrm{P}(2), 2.369(5)$	$\mathrm{Pt}(1)-\mathrm{P}(1), 2.2993(14)$
$\mathrm{Pt}(1)-\mathrm{P}(2), 2.3369(9)$	$\mathrm{B}(1)-\mathrm{O}(1), 1.47(2)$	$\mathrm{Pt}(1)-\mathrm{P}(2), 2.2964(14)$
$\mathrm{B}(1)-\mathrm{S}(1), 1.805(4)$	$\mathrm{B}(1)-\mathrm{O}(2), 1.40(3)$	$\mathrm{B}(1)-\mathrm{O}(1), 1.399(9)$
$\mathrm{B}(1)-\mathrm{S}(2), 1.829(4)$	$\mathrm{B}(2)-\mathrm{O}(3), 1.37(2)$	$\mathrm{B}(1)-\mathrm{O}(2), 1.414(9)$
$\mathrm{B}(2)-\mathrm{S}(3), 1.802(4)$	$\mathrm{B}(2)-\mathrm{O}(4), 1.49(2)$	
$\mathrm{B}(2)-\mathrm{S}(4), 1.810(4)$		$\mathrm{B}(1)-\mathrm{Pt}(1)-\mathrm{C} 1(1), 178.8(2)$
Bond angles	$\mathrm{B}(1)-\mathrm{Pt}(1)-\mathrm{B}(2), 80.0(8)$	$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2), 179.63(6)$
$\mathrm{B}(1)-\mathrm{Pt}(1)-\mathrm{B}(2), 78.5(2)$	$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2), 100.8(2)$	$\mathrm{B}(1)-\mathrm{Pt}(1)-\mathrm{P}(1), 89.5(2)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2), 100.38(3)$	$\mathrm{B}(1)-\mathrm{Pt}(1)-\mathrm{P}(1), 168.9(6)$	$\mathrm{B}(1)-\mathrm{Pt}(1)-\mathrm{P}(2), 90.2(2)$
$\mathrm{B}(1)-\mathrm{Pt}(1)-\mathrm{P}(1), 167.07(12)$	$\mathrm{B}(1)-\mathrm{Pt}(1)-\mathrm{P}(2), 90.1(6)$	$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{P}(1), 91.57(6)$
$\mathrm{B}(1)-\mathrm{Pt}(1)-\mathrm{P}(2), 92.54(12)$	$\mathrm{B}(2)-\mathrm{Pt}(1)-\mathrm{P}(1), 89.2(6)$	$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{P}(2), 88.72(6)$
$\mathrm{B}(2)-\mathrm{Pt}(1)-\mathrm{P}(1), 88.73(11)$	$\mathrm{B}(2)-\mathrm{Pt}(1)-\mathrm{P}(2), 169.8(6)$	
$\mathrm{B}(2)-\mathrm{Pt}(1)-\mathrm{P}(2), 167.34(11)$		

Clearly B-Pt-B angles less than 90° and $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angles greater than 90° are standard for this type of cis, bis-boryl complex although at this time, the origin of the particularly acute B-Pt-B angles remains unclear. Steric factors certainly favour such a distortion in that whilst PPh_{3} is a very three-dimensional ligand, the boryl groups are much more two-dimensional such that when they are oriented approximately perpendicular to the platinum square plane, they are probably able approach one another quite closely. In the complexes mentioned above [3,4,6], the interplanar angles between the boron trigonal plane and the mean square plane around the platinum centres range from 71.3 to 88.8° (with the exception of one $\mathrm{B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ group in $\left[\mathrm{Pt}(\right.$ dppe $\left.)\left\{\mathrm{B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{2}\right]$ for which the angle is 55.1°); in $\mathbf{8}$ and 9 , the corresponding interplanar angles are 78.2 and 74.2° for 8 and 78.1 and 80.9° for 9. Whether or not an electronic origin exists for the acute $\mathrm{B}-\mathrm{Pt}-\mathrm{B}$ angles and/or the orientations of the boryl ligands is also unclear although we note that a recent theoretical study by Sakaki and Kikuno [40] on model $\left(\mathrm{PH}_{3}\right)_{2}$ platinum(II) cis,bis-boryl complexes does reproduce the experimentally observed geometries, although no explicit comment is made concerning the $\mathrm{B}-\mathrm{Pt}-\mathrm{B}$ angles and the boryl ligand orientations ${ }^{5}$. Any further insight into this matter will have to await a more detailed theoretical analysis, but appreciable $\mathrm{B} \cdots \mathrm{B}$ interactions would seem to be relatively unimportant, however, in the view of the long $\mathrm{B} \cdots \mathrm{B}$ distances: $\mathrm{B} \cdots \mathrm{B}$ distances are $2.613 \AA$ for $\mathbf{8}$ and $2.62 \AA$ for 9 and range from 2.514 to $2.667 \AA$ for the complexes described in Refs. [3,4,6]; for comparison, the B-B bond distance in $\mathbf{1}$ is 1.678 (3) \AA.

In considering the nature of metal boryls in more detail, the cis-configuration observed for the platinum(II) complexes is also found in all other structurally characterised examples of metal bis-boryls (and tris-boryls) and is presumed to be due to the high trans influence of the boryl group. It is of interest to note that the bis-silyl, germyl and stannyl complexes of platinum(II), which result from the oxidative addition of $\mathrm{Si}-\mathrm{Si}, \mathrm{Ge}-\mathrm{Ge}$ and $\mathrm{Sn}-\mathrm{Sn}$ bonds respectively [27-29] are also cis, but in cases where $\mathrm{Si}-\mathrm{X}(\mathrm{X}=$ halide $)$ bond oxidative addition has occurred, the resulting $\left[\mathrm{PtX}\left(\mathrm{PR}_{3}\right)_{2}\left(\mathrm{SiR}_{3}^{\prime}\right)\right]$ complexes adopt a trans geometry. These data are consistent with a relative ordering of trans influence for the various ligands as $\mathrm{BR}_{2} \approx \mathrm{SiR}_{3}$ $>\mathrm{PR}_{3}>\mathrm{X}$ (the large trans influence of the boryl ligand and its effect on $\mathrm{Ir}-\mathrm{P}$ bond lengths has been discussed for the complex cis, mer $-\left[\operatorname{IrCl}\left(\mathrm{PMe}_{3}\right)_{3}\{\mathrm{~B}(1,2-\right.$ $\left.\left.\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right)_{2}$] in Ref. [17]) and we should therefore expect that a complex with the general formula

[^3]

Fig. 3. A view of the molecular structure of compound 11 with key atoms labelled and H atoms omitted. Ellipsoids are drawn at the 50% level.
$\left[\mathrm{PtX}\left(\mathrm{PR}_{3}\right)_{2}\left(\mathrm{BR}_{2}^{\prime}\right)\right]$ would also have a trans geometry. This expectation was confirmed in the synthesis and structural characterisation of the complex $\left[\mathrm{PtCl}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}\right](\mathbf{1 1})$.

Compound $\mathbf{1 1}$ was prepared ${ }^{6}$ from the reaction between $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ and $\mathrm{CLB}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)(\mathbf{1 2)}$ in high yield as a colourless crystalline material, the structure of which was established by X-ray crystallography. The results of this study are shown in Fig. 3 with selected bond lengths and angles given in Table 1. The structure of $\mathbf{1 1}$ clearly reveals a square planar platinum centre (maximum deviation from the $\mathrm{PtP}_{2} \mathrm{BCl}$ plane $=$ $0.008 \AA$) with the boryl and chloride ligands adopting a trans configuration; none of the interbond angles deviate significantly from idealised values. The Pt-B distance $(2.008(8) \AA)$ is slightly shorter than the Pt-B distances described above for the platinum(II) bis-boryls in line with chloride having a smaller trans influence than PPh_{3}. Consistent with this observation is the fact that the $\mathrm{Pt}-\mathrm{P}$ bond lengths in $\mathbf{1 1}$ are also slightly shorter than those in 8 and 9 for example (Table 1). Also noteworthy is the conformation about the $\mathrm{Pt}-\mathrm{B}$ bond such that the plane of the boryl ligand is almost perpendicular $\left(78.3^{\circ}\right)$ to the platinum square plane. As with complexes $\mathbf{8}$ and $\mathbf{9}$, this orientation is undoubtedly the one which minimises intramolecular steric interactions although, in line with the discussion above for the

[^4]bis-boryls, electronic factors which favour this orientation may also be important. The bromo compound $\left[\mathrm{PtBr}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}\right]$ (13) was prepared similarly from the reaction between $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta \mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ and $\mathrm{BrB}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)(\mathbf{1 4})$ and spectroscopic data for 13 were consistent with a structure analogous to that of 11.

12, $\mathrm{X}=\mathrm{Cl} ; 14, \mathrm{X}=\mathrm{Br}$

11, $\mathrm{X}=\mathrm{Cl} ; 13, \mathrm{X}=\mathrm{Br}$

As mentioned in Section 1, platinum(0) complexes are efficient catalysts for alkyne diboration in which it is thought that initial oxidative addition of the $\mathrm{B}-\mathrm{B}$ bond to the platinum centre is followed by dissociation of a phosphine ligand. Coordination of the alkyne and subsequent insertion into one of the $\mathrm{Pt}-\mathrm{B}$ bonds then affords a σ-vinyl species as shown in \mathbf{C} (although in none of the reactions studied so far has a species such as \mathbf{C} been isolated or even directly observed) [2-6]. Subsequent reductive elimination of a B-C bond then regenerates the $\mathrm{Pt}(0)$ centre and affords cis-1,2-diborylalkenes, cis- $\mathrm{R}\left(\mathrm{BR}_{2}^{\prime}\right) \mathrm{C}=\mathrm{C}\left(\mathrm{BR}_{2}^{\prime}\right) \mathrm{R}$.

The fact that intermediates such as \mathbf{C} have not been detected implies that reductive $\mathrm{B}-\mathrm{C}$ bond elimination is relatively fast, but in compounds such as $\mathbf{1 1}$ or $\mathbf{1 3}$ it may be possible to characterise a product such as \mathbf{D} (shown with two phosphines) containing a σ-vinyl group as subsequent reductive elimination of a $\mathrm{C}-\mathrm{X}$ bond is expected to be slower particularly in view of the likely trans disposition of the vinyl and X groups. A similar situation was observed in the related system involving the platinum silyl complexes trans- $\left[\mathrm{PtX}\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{SiMe}_{3}\right)\right]$ ($\mathrm{X}=\mathrm{Br}, \mathrm{I}$) which interestingly, react with the alkynes $\mathrm{RC} \equiv \mathrm{CR}(\mathrm{R}=\mathrm{Ph}, \mathrm{Pr})$ to afford the E-vinyl species trans $-\left[\operatorname{PtX}\left(\mathrm{PEt}_{3}\right)_{2}\left\{E-\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R})\left(\mathrm{SiMe}_{3}\right)\right\}\right][43,45]$.

C

D

Preliminary in situ NMR studies of the reaction between 11 and $\mathrm{EtO}_{2} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CO}_{2} \mathrm{Et}$ at $60^{\circ} \mathrm{C}$ in CDCl_{3} solution, however, have not shown evidence for alkyne insertion. Rather, it seems that $\mathrm{B}-\mathrm{Cl}$ reductive elimination may be taking place (i.e. $\mathrm{B}-\mathrm{Cl}$ oxidative addition may well be reversible) in that the complex
$\left[\mathrm{Pt}^{\left.\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{EtO}_{2} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CO}_{2} \mathrm{Et}\right)\right] \quad[44] \text { has been }}\right.$ identified as a significant product. As the reductive elimination process may be accelerated by the electron withdrawing nature of this alkyne and the final alkyne π-complex is stabilized by this as well, further examinations of the reactions of $\mathbf{1 1}$ and $\mathbf{1 3}$ with electron donating alkynes are in progress and will be reported in due course.

3. Experimental

3.1. General procedures

All reactions were performed using standard Schlenk or glove box techniques under an atmosphere of dry, oxygen-free dinitrogen. All solvents were distilled from appropriate drying agents immediately prior to use (sodium-benzophenone for $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CaH}_{2}$ for chlorinated solvents and sodium or sodium-benzophenone for toluene and hexanes). Microanalytical data were obtained at the University of Bristol. NMR spectra were recorded on JEOL GX 270, JEOL GX 400, JEOL Lambda 300 and Bruker WP 200 spectrometers and were referenced to $\mathrm{Me}_{4} \mathrm{Si}, \mathrm{Me}_{4} \mathrm{Si}, 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ and ${ }^{14} \mathrm{~B}$ nuclei, respectively. Mass spectra (high and low resolution) were obtained in the EI mode on a Micromass Autospec spectrometer.

3.2. Preparations

$\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Cl}_{4}\right)_{2}$ (4): A solution of $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ ($0.120 \mathrm{~g}, 0.6 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ was added to a solution of dry tetrachlorocatechol ($0.33 \mathrm{~g}, 1.53 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ at room temperature resulting in the immediate formation of a white precipitate. The mixture was stirred for 12 h after which time the solid was allowed to settle whereupon the $\mathrm{Et}_{2} \mathrm{O}$ was removed by syringe. After washing with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 5 \mathrm{~cm}^{3}\right)$, the solid was pumped to dryness. To this dry solid, $\mathrm{Et}_{2} \mathrm{O}$ (10 cm^{3}) was added followed by a solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$ ($1.3 \mathrm{~cm}^{3}$ of a 1.0 M solution) and the resulting slurry was then stirred at room temperature for 18 h . After this time, the solvent volume was reduced by vacuum to about $5 \mathrm{~cm}^{3}$ and toluene ($15 \mathrm{~cm}^{3}$) was added. The resulting suspension was then warmed to about $60^{\circ} \mathrm{C}$ and filtered through Celite, the remaining solid being washed with warm toluene $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and the clear, colourless filtrates combined. After reduction of the filtrate volume to about $8 \mathrm{~cm}^{3}$ and cooling to $-30^{\circ} \mathrm{C}$, compound 4 was obtained as a white powder $(0.25 \mathrm{~g}$, 63%).

Spectroscopic data for 4: Mass spectrum, m/z 514 $\left(\mathrm{M}^{+}, 100 \%\right)$. Hrms, $\mathrm{HC}_{12} \mathrm{~B}_{2} \mathrm{Cl}_{8} \mathrm{O}_{4}$ requires 507.756, found 507.755 with correct isotope pattern. Elemental analysis, $\mathrm{C}_{12} \mathrm{~B}_{2} \mathrm{Cl}_{8} \mathrm{O}_{4}$ requires C, 28.10, found C, 28.60.
$\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)_{2}(\mathbf{5})$: Compound $\mathbf{5}$ was prepared in a similar manner to 4 from $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ and dry tetrabromocatechol with typical yields of about 50%.

Spectroscopic data for 5: Mass spectrum, m/z 870 $\left(\mathrm{M}^{+}, 100 \%\right)$ with correct isotope pattern. Elemental analysis, $\mathrm{C}_{12} \mathrm{~B}_{2} \mathrm{Br}_{8} \mathrm{O}_{4}$ requires $\mathrm{C}, 16.70$, found $\mathrm{C}, 17.65$.

Compounds $\mathbf{4}$ and 5 are both very insoluble in common solvents requiring the use of hot toluene as means of extraction from the crude reaction mixture; isolated yields are thus rather low and it was also not possible to obtain satisfactory ${ }^{11} \mathrm{~B}$ NMR spectra for this reason. Since tetrachlorocatechol and tetrabromocatechol are usually hydrates, it is important that these are dried prior to use in order to avoid hydrolysis of $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ [45].
$\left[\mathrm{B}_{2}(\right.$ calix $\left.)\left(\mathrm{NHMe}_{2}\right)_{2}\right]$ (7): A solution of $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ ($0.33 \mathrm{~g}, 1.69 \mathrm{mmol}$) in toluene $\left(5 \mathrm{~cm}^{3}\right)$ was added to a suspension of Bu'calix[4]arene ($1.10 \mathrm{~g}, 1.69 \mathrm{mmol}$) in toluene ($30 \mathrm{~cm}^{3}$) and the resulting suspension refluxed for 4 h . After this time, all volatiles were removed by vacuum affording 7 as a toluene solvate as an analytically pure white solid in essentially quantitative yield ($1.26 \mathrm{~g}, 100 \%$).

Spectroscopic data for 7: NMR: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) \delta 7.08$ (d, 4 H , aryl $\left.\mathrm{C}-H,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2.5 \mathrm{~Hz}\right), 6.85(\mathrm{~d}, 4 \mathrm{H}$, aryl $\left.\mathrm{C}-H,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2.5 \mathrm{~Hz}\right), 4.75\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12.4\right.$ $\mathrm{Hz}), 4.10\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 3.35(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 3.25\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C} \mathrm{H}_{2},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12.4\right.$ Hz), 2.85 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{NH} M e_{2}$), 2.50 (br s, $2 \mathrm{H}, \mathrm{NH} \mathrm{Me}_{2}$), $1.15\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{C} M e_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad\left(\mathrm{CDCl}_{3}\right) \delta 148.7$, 143.6, 130.4, 128.1, 125.9, 124.2 (aryl C), 36.8 ($\mathrm{NH} \mathrm{Me}_{2}$), $35.4\left(\mathrm{CMe}_{3}\right)$, $34.0\left(\mathrm{CH}_{2}\right)$, $31.4\left(\mathrm{C} \mathrm{Me}_{3}\right)$, $30.8\left(\mathrm{CH}_{2}\right) ;{ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) \delta 20.5$ (br s). Mass spectrum, $\mathrm{m} / \mathrm{z} 754\left(\mathrm{M}^{+}-2 \mathrm{H}, 100 \%\right)$. Hrms, $\mathrm{C}_{48} \mathrm{H}_{64} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 754.507, found 754.505. Elemental analysis, $\mathrm{C}_{48} \mathrm{H}_{64} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 77.85 ; H , 8.80; N, 3.30, found C, $78.70 ; \mathrm{H}, 8.90 ; \mathrm{N}, 3.20$.
$\left[\mathrm{Pt}^{(}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{2}\right]$ (8): Samples of $\left.\left[\mathrm{Pt}^{\left(\mathrm{PPh}_{3}\right)}\right)_{2}\left(\eta-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right](0.171 \mathrm{~g}, 0.228 \mathrm{mmol})$ and 3 ($0.069 \mathrm{~g}, 0.228 \mathrm{mmol}$) were dissolved in toluene (5 cm^{3}) resulting in the immediate formation of a white precipitate. After stirring at room temperature for 15 min , the mixture was allowed to settle and the solvent was removed by filtration. The resulting white solid was then washed with hexanes $\left(5 \mathrm{~cm}^{3}\right)$ and dried by vacuum ($0.192 \mathrm{~g}, 82 \%$). Crystals suitable for X-ray diffraction

Table 2
Crystallographic data for the complexes $\mathbf{8}, \mathbf{9}$ and $\mathbf{1 1}$

Compound	$8 \cdot 0.5$ toluene	$9 \cdot 2.0$ toluene	11
Formula	$\mathrm{C}_{48} \mathrm{H}_{38} \mathrm{~B}_{2} \mathrm{P}_{2} \mathrm{PtS}_{4} \cdot 0.5 \mathrm{C} 7 \mathrm{H} 48$	$\mathrm{C}_{48} \mathrm{H}_{30} \mathrm{~B}_{2} \mathrm{Cl}_{8} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}$. 2. $\mathrm{OC}_{7} \mathrm{H}_{8}$	$\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{BClO}_{2} \mathrm{P}_{2} \mathrm{Pt}$
M	1067.7	1417.2	874.0
Crystal system	triclinic	triclinic	orthorhombic
Space group	$P \overline{1}$	$P \overline{1}$	Pbca
$a(\mathrm{~A})$	9.6914(7)	14.648(8)	11.5686(12)
b (A)	11.7173(9)	15.789(6)	23.389(3)
c (A$)$	22.718(2)	16.600(5)	26.790(3)
$\alpha\left({ }^{\circ}\right.$)	75.262(2)	106.70(5)	90
$\beta{ }^{\circ}$)	84.697(2)	101.82(4)	90
$\gamma\left({ }^{\circ}\right)$	68.990(3)	116.42(3)	90
$V\left(\AA^{3}\right)$	2329.1(3)	3036(2)	7248.8(13)
$F(000)$	1066	1408	3456
Z	2	2	8
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-1}\right)$	1.523	1.550	1.602
$\mu\left(\mathrm{mm}^{-1}\right)$	3.30	2.76	4.07
Crystal size (mm)	$0.50 \times 0.44 \times 0.16$	$0.20 \times 0.20 \times 0.20$	$0.14 \times 0.12 \times 0.10$
T (K)	160(2)	173(2)	160(2)
$\theta_{\text {max }}\left({ }^{\circ}\right.$)	28.4	25.0	25.0
Max. indices $h k l$	12, 14, 30	17, 18, 19	14, 29, 35
Reflections measured	14452	14114	35004
Unique reflections	10059	10047	6375
$R_{\text {int }}$	0.0432	0.0888	0.1143
Transmission	0.418-0.835	0.100-0.292	0.457-0.612
Weighting a, b	0.0329, 4.8269	0.139, 0.0	0.0082, 18.2721
Refined parameters	563	628	443
$R_{\text {w }}\left(\right.$ all data) ${ }^{\text {a }}$	0.082	0.292	0.080
R (data with $\left.F^{2}>2 \sigma\left(F^{2}\right)\right)^{\text {b }}$	0.031 (9600)	0.108 (5099)	0.035 (4251)
Goodness of fit on F^{2}	1.16	0.970	1.185
Extinction x	0.0003(2)	-	0.000024(11)
Max, min. electron density ($\mathrm{e}^{\AA^{-3}}$)	+1.90, - 1.67	+3.52, -3.99	+1.26, -0.85

[^5]Table 3
Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA \times 10^{3}$) for $\mathbf{8}\left(5 \mathrm{~cm}^{3}\right.$ toluene). $U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor

	x	y	z	$U(\mathrm{eq})$
Pt(1)	16888.57(14)	-281.82(11)	7273.52(5)	20.56(5)
B(1)	18395(4)	- 1890(4)	7776(2)	25.6(8)
S(1)	17985.8(10)	-3003.5(8)	8413.2(4)	28.7(2)
S(2)	20399.3(11)	-2350.6(9)	7678.0(5)	33.8(2)
C(1)	19824(4)	-3938(3)	8661(2)	28.5(7)
C(2)	20946(5)	-3634(4)	8317(2)	32.2(8)
C(3)	22437(5)	-4309(4)	8488(2)	42.2 (10)
C(4)	22759(5)	-5276(5)	9012(2)	48.2(12)
C(5)	21637(6)	-5581(4)	9355(2)	46.3(11)
C(6)	20161(5)	-4920(4)	9182(2)	38.1(9)
B(2)	17227(5)	- 1524(4)	6722(2)	24.7(7)
S(3)	16391.4(12)	-2720.1(9)	6907.0(4)	30.9(2)
S(4)	18282.3(11)	- 1621.0(8)	6024.8(4)	28.4(2)
C(7)	17062(4)	-3407(3)	6290(2)	26.3(7)
C(8)	17935(4)	- 2887(3)	5869(2)	25.3(7)
C(9)	18489(4)	-3379(4)	5358(2)	32.1(8)
C(10)	18201(4)	-4410(4)	5287(2)	33.8(8)
C(11)	17365(5)	-4951(4)	5717(2)	35.7(9)
C(12)	16788(5)	-4453(4)	6213(2)	32.8(8)
$\mathrm{P}(1)$	15254.4(9)	1327.3(8)	6515.8(4)	20.5(2)
C(13)	14048(4)	640(3)	6285(2)	23.8(7)
C(14)	13991(4)	457(4)	5710(2)	30.0(8)
C(15)	13067(5)	- 141(4)	5604(2)	37.4(9)
C(16)	12198(5)	-537(4)	6057(2)	38.5(9)
C(17)	12234(5)	-342(4)	6628(2)	41.7(10)
C(18)	13161(5)	228(4)	6744(2)	35.5(9)
C(19)	13888(4)	2874(3)	6603.1(15)	23.6(7)
C(20)	12382(4)	3269(4)	6468(2)	32.9(8)
C(21)	11408(5)	4460(4)	6520(2)	39.8(10)
C(22)	11911(5)	5262(4)	6709(2)	40.1(10)
C(23)	13409(5)	4881(4)	6841(2)	38.7(9)
C(24)	14390(4)	3699(3)	6783(2)	30.9(8)
C(25)	16274(4)	1847(3)	5851.2(15)	21.5(6)
C(26)	15546(4)	2746(3)	5339(2)	27.8(7)
C(27)	16349(5)	3143(4)	4846(2)	30.8(8)
C(28)	17897(4)	2648(4)	4858(2)	29.9(8)
C(29)	18638(4)	1761(4)	5367(2)	30.0(8)
C(30)	17832(4)	1358(3)	5863(2)	24.5(7)
P (2)	16470.9(10)	743.5(8)	8065.5(4)	22.4(2)
C(31)	17387(4)	- 100(3)	8807(2)	27.0(7)
C(32)	16629(5)	-317(5)	9346(2)	42.7(10)
C(33)	17423(6)	-949(6)	9892(2)	57.6(15)
C(34)	18945(6)	- 1354(5)	9898(2)	54.0(13)
C(35)	19709(5)	-1159(5)	9365(2)	49.1(12)
C(36)	18923(5)	-530(4)	8823(2)	37.0(9)
C(37)	14501(4)	1156(4)	8241(2)	27.3(7)
C(38)	14003(5)	137(4)	8378(2)	34.4(8)
C(39)	12504(5)	334(5)	8474(2)	40.8(10)
C(40)	11482(5)	1551(5)	8433(2)	41.7(10)
C(41)	11959(5)	2566(5)	8292(2)	41.0(10)
C(42)	13466(4)	2370(4)	8197(2)	32.3(8)
C(43)	17023(4)	2114(3)	7923(2)	29.1(7)
C(44)	16591(5)	2997(4)	8279(2)	43.9(10)
C(45)	17158(6)	3971(4)	8153(3)	57.9(15)
C(46)	18178(6)	4041(4)	7693(3)	56.2(14)
C(47)	18634(6)	3158(5)	7352(2)	51.0(12)
C(48)	18055(4)	2203(4)	7461(2)	33.7(8)
C(49)	16143(9)	4833(7)	9596(3)	63(3)
C(50)	16816(8)	3533(8)	9702(4)	68(3)
C(51)	16202(10)	2752(6)	10118(4)	74(3)

Table 3 (continued)

	x	y	z	$U(\mathrm{eq})$
$\mathrm{C}(52)$	$14914(11)$	$3270(10)$	$10428(4)$	$83(4)$
$\mathrm{C}(53)$	$14241(9)$	$4569(11)$	$10322(4)$	$76(3)$
$\mathrm{C}(54)$	$14855(9)$	$5351(7)$	$9906(4)$	$71(3)$
$\mathrm{C}(55)$	$14130(16)$	$6753(7)$	$9792(7)$	$121(8)$

were obtained by recrystallisation from toluene/hexanes mixtures.

Spectroscopic data for 8: NMR: ${ }^{1} \mathrm{H}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.36$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{PPh} h_{3}\right.$, and $\left.4 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6}-3,6-H_{4}\right), 7.06(\mathrm{~m}, 18 \mathrm{H}$, $\left.\mathrm{PPh} h_{3}\right), 6.88\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6}-4,5-H_{4}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $\delta 145.7$ (br m, $\mathrm{S}_{2}-1,2-\mathrm{C}_{6} \mathrm{H}_{4}$), 134.1 ($\mathrm{m}, o-\mathrm{PPh}_{3}$), 129.4 (s, p-PPh h_{3}, 127.6 ($\mathrm{m}, m-\mathrm{PPh} h_{3}$), 124.3 ($\mathrm{s}, \mathrm{S}_{2}-4,5-$ $\left.C_{6} \mathrm{H}_{4}\right), 122.7\left(\mathrm{~s}, \mathrm{~S}_{2}-3,6-\mathrm{C}_{6} \mathrm{H}_{4}\right), \mathrm{P} P h_{3}$ ipso carbons not observed; ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 72$ (br s); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 28.0$ (br s, ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=1600 \mathrm{~Hz}$). Elemental analysis, $\mathrm{C}_{48} \mathrm{H}_{38} \mathrm{~B}_{2} \mathrm{P}_{2} \mathrm{PtS}_{4}$ requires C , 56.45; $\mathrm{H}, 3.75$, found $\mathrm{C}, 56.55 ; \mathrm{H}, 3.65$.
$\left[\mathrm{Pt}^{\left.\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Cl}_{4}\right)\right\}_{2}\right](9): \text { A suspension of } 4}\right.$ ($0.050 \mathrm{~g}, 0.097 \mathrm{mmol}$) in toluene ($20 \mathrm{~cm}^{3}$) was gently warmed until most of the solid had dissolved. A solution of $\left.\left[\mathrm{Pt}^{(} \mathrm{PPh}_{3}\right)_{2}\left(\eta \mathrm{C}_{2} \mathrm{H}_{4}\right)\right](0.073 \mathrm{~g}, 0.097 \mathrm{mmol})$ in toluene ($5 \mathrm{~cm}^{3}$) was then added and the resulting mixture stirred at room temperature for 2 h . After this time the solvent volume was reduced by vacuum to about 5 cm^{3} and the reaction solution cooled to $-30^{\circ} \mathrm{C}$. After 3 days, white crystals of $9(0.048 \mathrm{~g}, 40 \%)$ had formed, some of which were suitable for X-ray diffraction.

Spectroscopic data for 9: NMR: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) \delta 7.4-$ $7.0\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPh}_{3}\right) ;{ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) \delta 51.5$ (br s); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) \delta 26.3\left(\mathrm{br} \mathrm{s},{ }^{1} \mathrm{~J}_{\mathrm{PIP}}=1608 \mathrm{~Hz}\right)$. Elemental analysis, $\mathrm{C}_{48} \mathrm{H}_{30} \mathrm{~B}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{PtCl}_{8}$ requires $\mathrm{C}, 46.75$; $\mathrm{H}, 2.45$, found $\mathrm{C}, 47.25 ; \mathrm{H}, 2.90$.
$\left[\mathrm{Pt}^{(}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)\right\}_{2}\right]$ (10): Compound $\mathbf{1 0}$ was prepared in an identical manner to 9 from $\left[\mathrm{Pt}^{\left(\mathrm{PPh}_{3}\right)_{2}}\left(\eta \mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ and 5 and with similar yields (55\%).

Spectroscopic data for 10: NMR: ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right)$ $\delta 48.0(\mathrm{br} \mathrm{s}) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) \delta 26.0\left(\mathrm{br} \mathrm{s},{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=\right.$ 1614 Hz). Elemental analysis, $\mathrm{C}_{48} \mathrm{H}_{30} \mathrm{~B}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{PtBr}_{8}$ requires C, $36.30 ; \mathrm{H}, 1.90$, found C, 38.00 ; H, 2.10 .
$\left[\mathrm{PtCl}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}\right]$ (11): Samples of $\left.\left[\mathrm{Pt}^{\left(\mathrm{PPh}_{3}\right)}\right)_{2}\left(\eta-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right](0.100 \mathrm{~g}, 0.134 \mathrm{mmol})$ and $\mathbf{1 2}$ $(0.025 \mathrm{~g}, 0.160 \mathrm{mmol})$ were dissolved in toluene (5 cm^{3}) which resulted in the immediate formation of a white precipitate. After stirring for 1.5 h , the reaction mixture was filtered and the white solid was washed with toluene ($2 \mathrm{~cm}^{3}$) affording 11 ($0.090 \mathrm{~g}, 78 \%$). Crystals suitable for X-ray diffraction were obtained by layering hexanes over a CDCl_{3} solution.

Spectroscopic data for 11: NMR: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) \delta 7.72$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{PPh} h_{3}\right), 7.24\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{PPh}_{3}\right), 6.57(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{O}_{2} \mathrm{C}_{6}-3,6-\mathrm{H}_{4}\right), 6.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{O}_{2} \mathrm{C}_{6}-4,5-\mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$

Table 4
Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $9\left(20 \mathrm{~cm}^{3} \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}\right) . U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor

	x	y	z	$U(\mathrm{eq})$
$\mathrm{Pt}(1)$	1915(1)	2307(1)	4207(1)	38(1)
$\mathrm{O}(1)$	1408(11)	2016(11)	2196(8)	49(3)
O(2)	- 109(11)	835(10)	2345(8)	52(4)
$\mathrm{O}(3)$	3244(10)	1465(9)	3422(7)	37(3)
$\mathrm{O}(4)$	1768(10)	190(9)	3529(8)	39(3)
B(1)	981(22)	1691(19)	2853(15)	46(6)
B(2)	2372(16)	1304(17)	3679(14)	36(5)
$\mathrm{Cl}(1)$	-2522(7)	-751(7)	881(5)	129(3)
$\mathrm{Cl}(2)$	-2694(8)	-670(7)	-1031(5)	135(4)
$\mathrm{Cl}(3)$	-633(8)	912(7)	- 1216(4)	117(3)
$\mathrm{Cl}(4)$	1658(8)	2398(7)	493(5)	118(3)
$\mathrm{Cl}(5)$	1038(6)	-2135(4)	3082(5)	82(2)
$\mathrm{Cl}(6)$	2629(6)	-2660(4)	2325(4)	79(2)
$\mathrm{Cl}(7)$	4707(5)	-881(5)	2270(4)	75(2)
$\mathrm{Cl}(8)$	5085(5)	1389(4)	2826(4)	62(2)
$\mathrm{P}(1)$	3181(4)	2875(4)	5665(3)	38(1)
$\mathrm{P}(2)$	1125(4)	3316(4)	4567(3)	36(1)
C(1)	4119(16)	2405(14)	5639(11)	38(4)
C(2)	3815(16)	1431(14)	5536(14)	53(6)
C(3)	4476(19)	1023(16)	5399(14)	59(6)
C(4)	5508(22)	1646(19)	5436(13)	59(6)
C(5)	5847(20)	2680(19)	5539(16)	73(7)
C(6)	5168(16)	3031(17)	5630(14)	51(5)
C(7)	2492(14)	2340(18)	6366(13)	52(6)
C(8)	3059(30)	2539(32)	7215(19)	224(29)
C(9)	2495(31)	2115(35)	7752(19)	214(29)
C(10)	1339(34)	1409(26)	7303(25)	126(15)
C(11)	869(23)	1154(19)	6459(24)	82(8)
C(12)	1395(16)	1579(16)	5977(16)	58(6)
C(13)	4119(16)	4278(13)	6304(12)	40(5)
C(14)	4662(37)	4749(22)	7195(19)	199(25)
C(15)	5549(44)	5852(20)	7628(19)	254(34)
C(16)	5710(21)	6433(16)	7183(16)	74(7)
C(17)	5141(19)	5943(17)	6278(16)	81(8)
C(18)	4357(19)	4891(19)	5848(15)	80(8)
C(19)	1668(16)	4365(16)	5696(13)	49(5)
C(20)	1520(24)	4047(21)	6382(17)	90(9)
C(21)	1953(32)	4844(31)	7302(18)	120(14)
C(22)	2457(28)	5857(28)	7478(20)	115(13)
C(23)	2605(23)	6131(21)	6792(19)	101(11)
C(24)	2155(19)	5430(18)	5885(17)	78(8)
C(25)	1143(16)	3997(14)	3830(13)	41(5)
C(26)	420(22)	4301(20)	3638(17)	74(8)
C(27)	435(26)	4810(24)	3086(22)	103(11)
C(29)	1973(21)	4728(18)	2884(16)	69(7)
C(30)	1950(18)	4201(15)	3473(15)	56(6)
C(31)	-339(16)	2500(14)	4418(12)	39(5)
C(32)	-879(16)	2951(16)	4748(13)	47(5)
C(33)	- 1987(19)	2308(21)	4591(17)	72(7)
C(34)	- 2524(24)	1236(22)	4096(18)	82(8)
C(34)	1239(27)	4991(21)	2739(22)	101(10)
C(35)	1979(18)	829(19)	3830(17)	64(7)
C(36)	-889(17)	1434(15)	3968(13)	44(5)
C(38)	-341(22)	769(20)	1464(12)	65(8)
C(39)	-1369(20)	100(20)	732(14)	84(9)
C(40)	- 1409(25)	182(22)	-92(15)	81(9)
C(41)	-516(29)	879(24)	- 155(16)	82(9)
C(42)	486(21)	1506(21)	580(15)	70(7)
C(43)	561(21)	1476(17)	1383(13)	53(6)
C(44)	3258(16)	554(15)	3161(11)	42(5)
C(45)	2365(15)	-191(14)	3223(12)	35(4)

Table 4 (continued)

	x	y	z	$U(\mathrm{eq})$
$\mathrm{C}(46)$	$2178(20)$	$-1206(16)$	$2992(12)$	$61(7)$
$\mathrm{C}(47)$	$2889(20)$	$-1398(15)$	$2666(13)$	$54(6)$
$\mathrm{C}(48)$	$3794(17)$	$-626(16)$	$2628(12)$	$47(5)$
$\mathrm{C}(49)$	$3993(14)$	$393(14)$	$2871(12)$	$37(4)$
$\mathrm{C}(101)$	$2924(56)$	$8043(50)$	$9945(29)$	$310(38)$
$\mathrm{C}(102)$	$3573(35)$	$8614(32)$	$9494(38)$	$229(25)$
$\mathrm{C}(103)$	$3271(43)$	$8727(39)$	$8600(34)$	$194(20)$
$\mathrm{C}(104)$	$2187(28)$	$8224(27)$	$8207(22)$	$112(10)$
$\mathrm{C}(105)$	$1420(31)$	$7620(31)$	$8579(25)$	$139(13)$
$\mathrm{C}(106)$	$1990(37)$	$7671(36)$	$9455(36)$	$174(18)$
$\mathrm{C}(107)$	$1200(53)$	$6940(51)$	$9763(47)$	$349(42)$
$\mathrm{C}(201)$	$6015(51)$	$4543(56)$	$10324(30)$	$386(49)$
$\mathrm{C}(202)$	$5232(43)$	$3482(62)$	$10000(45)$	$353(43)$
$\mathrm{C}(203)$	$5028(41)$	$2775(45)$	$9156(49)$	$834(162)$
$\mathrm{C}(204)$	$5606(51)$	$3129(50)$	$8635(32)$	$695(120)$
$\mathrm{C}(205)$	$6389(43)$	$4191(54)$	$8960(30)$	$269(30)$
$\mathrm{C}(206)$	$6593(42)$	$4898(42)$	$9804(34)$	500
$\mathrm{C}(207)$	$7682(56)$	$5945(46)$	$10294(57)$	500

$\left(\mathrm{CDCl}_{3}\right) \delta 149.1\left(\mathrm{t}, \mathrm{O}_{2}-1,2-\mathrm{C}_{6} \mathrm{H}_{4},{ }^{3} \mathrm{~J}_{\mathrm{PIC}}=36 \mathrm{~Hz}\right), 134.5$ $\left(\mathrm{m}, o-\mathrm{PPh} h_{3}\right), 131.4\left(\mathrm{t}, \mathrm{ipso}^{\left.-\mathrm{PPh}_{3},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=29 \mathrm{~Hz}\right), 130.2}\right.$ $\left(\mathrm{s}, p-\mathrm{PPh} h_{3}\right), 128.0\left(\mathrm{t}, m-\mathrm{P} P h_{3},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=11 \mathrm{~Hz}\right), 119.9(\mathrm{~s}$, $\left.\mathrm{O}_{2}-4,5-\mathrm{C}_{6} \mathrm{H}_{4}\right), \quad 110.6 \quad\left(\mathrm{~s}, \quad \mathrm{O}_{2}-3,6-\mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ $\left(\mathrm{CDCl}_{3}\right) \delta 28.7(\mathrm{br} \mathrm{s}) ;{ }^{31} \mathrm{P}-\left\{{ }^{\mathrm{T}} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) \delta 23.5(\mathrm{~s}$, ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=2869 \mathrm{~Hz}$). Elemental analysis, $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{BClO}_{2} \mathrm{P}_{2} \mathrm{Pt}$ requires C, $57.70 ; \mathrm{H}, 3.90$, found C , 58.15; H, 3.80.
$\left[\mathrm{PtBr}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{~B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}\right]$ (13): Samples of $\left[\mathrm{Pt}^{\left.\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right](0.128 \mathrm{~g}, 0.17 \mathrm{mmol}) \text { and } 14}\right.$ ($0.051 \mathrm{~g}, 0.26 \mathrm{mmol}$) were dissolved in toluene $\left(5 \mathrm{~cm}^{3}\right)$ which resulted in the immediate formation of a white precipitate. After stirring for 1.5 h , the reaction mixture was cooled to $-40^{\circ} \mathrm{C}$ and left to stand overnight. After this time, the reaction mixture was filtered and washed with hexanes ($5 \mathrm{~cm}^{3}$) affording 13 as a white powder ($0.135 \mathrm{~g}, 87 \%$).

Spectroscopic data for 13: NMR: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) \delta 7.71$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{PPh} h_{3}\right), 7.22\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{PPh}_{3}\right), 6.53(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) \delta 149.1\left(\mathrm{~s}, \mathrm{O}_{2}-1,2-\mathrm{C}_{6} \mathrm{H}_{4}\right)$, $134.6\left(\mathrm{~m}, o-\mathrm{PPh}_{3}\right), 131.7\left(\mathrm{t}, i p s o-\mathrm{PPh}_{3},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=29 \mathrm{~Hz}\right)$, 130.2 ($\mathrm{s}, p-\mathrm{PPh}_{3}$), 128.1 ($\mathrm{m}, m-\mathrm{PPh}_{3}$), $120.0\left(\mathrm{~s}, \mathrm{O}_{2}-4,5-\right.$ $\left.C_{6} \mathrm{H}_{4}\right), 119.7\left(\mathrm{~s}, \mathrm{O}_{2}-3,6-\mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) \delta$ 30.9 (br s); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) \delta 22.8\left(\mathrm{~s},{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=2844\right.$ Hz).

3.3. X-ray crystallography

Crystallographic data for 8, 9 and 11, the former two as toluene solvates, are presented in Table 2; atomic positional parameters are listed in Tables $3-5$, respectively. Measurements were made on Siemens SMART CCD area detector diffractometers with $\mathrm{Mo}-K_{\alpha}$ radiation ($\lambda=0.71073 \AA$) [46]. Intensities were integrated [46] from several series of exposures, each exposure covering 0.3° in ω, and the total data set being more

Table 5
Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 11. $U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor

	x	y	z	$U(\mathrm{eq})$
$\mathrm{Pt}(1)$	3909.6(2)	1656.68(9)	1373.53(9)	20.48(8)
$\mathrm{Cl}(1)$	3900.5(15)	1612.3(7)	461.9(5)	29.8(3)
B(1)	3900(7)	1678(3)	2123(3)	29.3(16)
$\mathrm{O}(1)$	4837(4)	1546.0(18)	2432.2(17)	29.7(11)
$\mathrm{O}(2)$	2940(4)	1829.3(17)	2421.2(16)	27.3(10)
C(1)	4452(7)	1619(3)	2914(2)	30.7(15)
C(2)	3308(7)	1787(3)	2902(3)	30.5(16)
C(3)	2690(8)	1897 (3)	3334(3)	44(2)
C(4)	3295(8)	1821(3)	3767(3)	48(2)
C(5)	4446(9)	1665(4)	3802(3)	58(2)
C(6)	5043 (8)	1559(3)	3351(3)	47(2)
P(1)	4090.9(13)	2635.5(6)	1360.4(7)	21.6(3)
C(7)	2967(6)	2931(3)	967(3)	33.7(16)
C(8)	1852(7)	2760(3)	1040(4)	59(2)
C(9)	954(9)	2980(4)	758(6)	98(4)
C(10)	1212 (12)	3366(5)	376(5)	111(4)
C(11)	2322(12)	3534(4)	293(4)	88(3)
C(12)	3211(9)	3320(3)	580(3)	55(2)
C(13)	5415(6)	2924(2)	1101(2)	25.0(15)
C(14)	5907(6)	2676(3)	671(3)	41.1(19)
C(15)	6828(7)	2930(3)	435(3)	50(2)
C(16)	7319(7)	3421(3)	630(3)	44(2)
C(17)	6869(6)	3668(3)	1054(2)	31.6(16)
C(18)	5929(5)	3418(2)	1290(2)	25.6(14)
C(19)	3971(6)	3008(2)	1952(2)	23.0(14)
C(20)	4790(6)	2909(3)	2321(3)	33.4(17)
C(21)	4723(8)	3170(3)	2786(3)	47(2)
C(22)	3819(8)	3536(3)	2883(3)	55(2)
C(23)	2993 (8)	3647(3)	2524(4)	56(2)
C(24)	3063(6)	3386(3)	2054(3)	37.6(18)
$\mathrm{P}(2)$	3736.5(13)	678.8(6)	1391.0(6)	21.0(3)
C(25)	2400(5)	383(3)	1125(2)	25.1(15)
C(26)	2047(6)	-159(3)	1265(3)	35.9(18)
C(27)	1046(7)	-389(3)	1060(3)	45(2)
C(28)	400(7)	-86(3)	721(3)	43(2)
C(29)	759(6)	453(3)	581(3)	43(2)
C(30)	1769(6)	696(3)	780(3)	32.8(16)
C(31)	4921(5)	362(3)	1046(2)	23.3(15)
C(32)	5999(5)	628(3)	1075(2)	27.3(15)
C(33)	6936(6)	409(3)	813(3)	33.2(17)
C(34)	6795(6)	-70(3)	516(3)	34.1(17)
C(35)	5732(6)	-324(3)	476(3)	36.0(18)
C(36)	4804(6)	-123(3)	747(3)	31.8(17)
C(37)	3776(6)	351(3)	2008(2)	24.5(14)
C(38)	4691(6)	13(3)	2173(3)	33.9(16)
C(39)	4731(7)	- 177(3)	2665(3)	39.5(19)
C(40)	3863(7)	-41(3)	2993(3)	39.4(17)
C(41)	2929(6)	278(3)	2830(3)	31.8(16)
C(42)	2870(6)	472(3)	2341(2)	29.6(16)

than a hemisphere in each case. Absorption corrections were applied, based on multiple and symmetry equivalent measurements [47]. The structures were solved variously by heavy atom and direct methods and refined by least-squares on F^{2} values for all reflections, with weighting $w^{-1}=\sigma^{2}\left(F_{0}^{2}\right)+(a P)^{2}+(b P)$, where $P=$ $\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) /^{3}$. An isotropic extinction parameter x was refined for 8 and 11, whereby $F_{\mathrm{c}}^{\prime}=F_{\mathrm{c}} /(1+$
$\left.0.001 x F_{\mathrm{c}}^{2} \lambda^{3} / \sin 2 \theta\right)^{1 / 4}$. For 8 and 11, some restraints were applied to anisotropic displacement parameters in ligand substituents showing highly anisotropic behaviours and hence possible unresolved disorder and for disordered toluene solvent in 8. For 9, the toluene solvates were refined subject to positional restraints with isotropic atoms, the ring carbons of one of toluene being constrained to regular hexagonal geometry. Isotropic hydrogen atoms were constrained with a riding model. The largest features in the final difference syntheses were close to Pt atoms and disordered groups.

Additional material available from the Cambridge Crystallographic Data Centre comprises atomic coordinates and displacement parameters and complete bond lengths and angles.

Acknowledgements

We thank the EPSRC for support and for studentships (F.J.L., M.J.Q. and A.J.S.) and NSERC of Canada for research funding (T.B.M.). This collaboration was also supported by the NSERC/Royal Society (London) Bilateral Exchange Program (T.B.M. and N.C.N.), the British Council (Ottawa) (F.J.L., G.L.) and the University of Newcastle upon Tyne through a Senior Visiting Research Fellowship to T.B.M.

References

[1] R.T. Baker, P. Nguyen, T.B. Marder, S.A. Westcott, Angew. Chem. Int. Ed. Engl. 34 (1995) 1336.
[2] T. Ishiyama, N. Matsuda, N. Miyaura, A. Suzuki, J. Am. Chem. Soc. 115 (1993) 11018.
[3] T. Ishiyama, N. Matsuda, M. Murata, F. Ozawa, A. Suzuki, N. Miyaura, Organometallics 15 (1996) 713.
[4] C.N. Iverson, M.R. Smith, J. Am. Chem. Soc. 117 (1995) 4403.
[5] C.N. Iverson, M.R. Smith, Organometallics 15 (1996) 5155.
[6] G. Lesley, P. Nguyen, N.J. Taylor, T.B. Marder, A.J. Scott, W. Clegg, N.C. Norman, Organometallics 15 (1996) 5137.
[7] T. Ishiyama, M. Yamamoto, N. Miyaura, Chem. Commun. (1996) 2073.
[8] T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 60 (1995) 7508.
[9] T. Ishiyama, M. Yamamoto and N. Miyaura, Chem. Lett. (1996) 1117.
[10] J.F. Hartwig, X. He, Angew. Chem. Int. Ed. Engl. 35 (1996) 315.
[11] J.F. Hartwig, X. He, Organometallics 15 (1996) 5350.
[12] X. He, J.F. Hartwig, Organometallics 15 (1996) 400.
[13] C. Dai, G. Stringer, J.F. Corrigan, N.J. Taylor, T.B. Marder, N.C. Norman, J. Organomet. Chem. 513 (1996) 273.
[14] P. Nguyen, G. Lesley, N.J. Taylor, T.B. Marder, N.L. Pickett, W. Clegg, M.R.J. Elsegood, N.C. Norman, Inorg. Chem. 33 (1994) 4623.
[15] R.T. Baker, J.C. Calabrese, S.A. Westcott, P. Nguyen, T.B. Marder, J. Am. Chem. Soc. 115 (1993) 4367.
[16] C. Dai, G. Stringer, T.B. Marder, A.J. Scott, W. Clegg, N.C. Norman, Inorg. Chem. 36 (1997) 272.
[17] C. Dai, G. Stringer, T.B. Marder, R.T. Baker, A.J. Scott, W. Clegg, N.C. Norman, Can. J. Chem. 74 (1996) 2026.
[18] D.R. Lantero, D.H. Motry, D.L. Ward, M.R. Smith, J. Am. Chem. Soc. 116 (1994) 10811.
[19] J.F. Hartwig, S.R. De Gala, J. Am. Chem. Soc. 116 (1994) 3661.
[20] K.M. Waltz, X. He, C. Muhoro, J.F. Hartwig, J. Am. Chem. Soc. 117 (1995) 11357.
[21] J.F. Hartwig, S. Huber, J. Am. Chem. Soc. 115 (1993) 4908.
[22] S.A. Westcott, N.J. Taylor, T.B. Marder, R.T. Baker, N.J. Jones, J.C. Calabrese, J. Chem. Soc. Chem. Commun. (1991) 304.
[23] S.A. Westcott, T.B. Marder, R.T. Baker, J.C. Calabrese, Can. J. Chem. 71 (1993) 930.
[24] P. Nguyen, H.P. Blom, S.A. Westcott, N.J. Taylor, T.B. Marder, J. Am. Chem. Soc. 115 (1993) 9329.
[25] J.R. Knorr, J.S. Merola, Organometallics 9 (1990) 3008.
[26] R.T. Baker, D.W. Ovenall, J.C. Calabrese, S.A. Westcott, N.J. Taylor, I.D. Williams, T.B. Marder, J. Am. Chem. Soc. 112 (1990) 9399.
[27] M. Suginome, H. Oike, P.H. Shuff, Y. Ito, Organometallics 15 (1996) 2170.
[28] H. Yamashita, T. Kobayashi, M. Tanaka, J.A. Samuels, W.E. Streib, Organometallics 11 (1992) 2330.
[29] Y. Obora, Y. Tsuji, K. Nishiyama, M. Ebihara, T. Kawamura, J. Am. Chem. Soc. 118 (1996) 10922.
[30] M. Suginome, H. Nakamura, Y. Ito, Chem. Commun. (1996) 2777.
[31] S. Onozawa, Y. Hatanaka, T. Sakakura, S. Shimada, M. Tanaka, Organometallics 15 (1996) 5450.
[32] H. Yamashita, T. Hatashi, T. Kobayashi, M. Tanaka, M. Goto, J. Am. Chem. Soc. 110 (1988) 4417.
[33] H. Yamashita, A.M. Kawamoto, M. Tanaka, M. Goto, Chem. Lett. (1990) 2107.
[34] L. Han, N. Choi, M. Tanaka, J. Am. Chem. Soc. 118 (1996) 7000.
[35] H. Kuniyasu, A. Ogawa, S. Miyazaki, I. Ryu, N. Sonoda, J. Am. Chem. Soc. 113 (1991) 9796.
[36] F.J. Lawlor, N.C. Norman, N.L. Pickett, E.G. Robins, P. Nguyen, G. Lesley, T.B. Marder, J.A. Ashmore, J.C. Green, Inorg. Chem., in press, and refs. therein.
[37] W. Clegg, M.R.J. Elsegood, F.J. Lawlor, N.C. Norman, N.L. Pickett, E.G. Robins, A.J. Scott, P. Nguyen, N.J. Taylor, T.B. Marder, Inorg. Chem., in press.
[38] H. Nöth, Z. Naturforsch. Teil B 39 (1984) 1463.
[39] G. Lesley, T.B. Marder, N.C. Norman, C.R. Rice, Main Group Chem. News (1997), in press.
[40] S. Sakaki, T. Kikuno, Inorg. Chem. 36 (1997) 226.
[41] G. Schmid, W. Petz, W. Arloth, H. Nöth, Angew. Chem. Int. Ed. Engl. 6 (1967) 696.
[42] M. Fishwick, H. Nöth, W. Petz, M.G.H. Wallbridge, Inorg. Chem. 15 (1976) 490.
[43] H. Yamashita, M. Tanaka, M. Goto, Organometallics 12 (1993) 988.
[44] Y. Koie, S. Shinoda, Y. Saito, J. Chem. Soc. Dalton Trans. (1981) 1082.
[45] C.J. Carmalt, W. Clegg, A.H. Cowley, F.J. Lawlor, T.B. Marder, N.C. Norman, C.R. Rice, A.J. Scott, Polyhedron 16 (1997) 2325.
[46] SMART (control) and SAINT (integration) Software, Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA, 1994.
[47] G.M. Sheldrick, SHELXTL version 5, Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA, 1995.

[^0]: ${ }^{*}$ Corresponding author.
 ${ }^{1}$ Dedicated to Professor Ken Wade on the occasion of his 65th birthday and in recognition of his outstanding contributions to the understanding of the chemistry of boron.
 ${ }^{2}$ Also corresponding author. Present address: Department of Chemistry, The University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, UK.

[^1]: ${ }^{3}$ For selected examples, see the following: for $\mathrm{Si}-\mathrm{Si}$, Ref. [27]; for $\mathrm{Ge}-\mathrm{Ge}$, Ref. [28]; for $\mathrm{Sn}-\mathrm{Sn}$, Ref. [29]; for B-Si, Ref. [30]; for B-Sn, Ref. [31]; for $\mathrm{Si}-\mathrm{Br}$, Ref. [32]; for $\mathrm{Si}-\mathrm{Cl}$, Ref. [33]; for $\mathrm{P}-\mathrm{Se}$, Ref. [34]; for S-S and $\mathrm{Se}-\mathrm{Se}$, Ref. [35].

[^2]: ${ }^{4}$ For a recent review of diborane(4) compounds, see [39].

[^3]: ${ }^{5}$ Possible electronic factors influencing observed boryl ligand orientations have been discussed in Refs. [19,21].

[^4]: ${ }^{6}$ Two prior reports of oxidative addition of $\mathrm{B}-\mathrm{X}$ bonds to $\mathrm{Pt}(0)$ triphenylphosphine complexes have appeared, but only IR and elemental analysis data were used to suggest the formulation; no NMR data or X-ray structural results were presented $[41,42]$.

[^5]: ${ }^{\mathrm{a}} R_{\mathrm{w}}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2}$.
 ${ }^{\mathrm{b}} R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|$.

